In the Bingo game DApp demo, we’ve already talked about the aelf real random number generator, which can generate unpredictable random numbers between 0 and 255, making it a useful tool. The interaction logic of this DApp’s backend is very much the same as that of blockchain smart contract. But this DApp is so simple that it doesn’t really show what aelf is capable of. In fact, aelf’s got an awful lot more in its arsenal. When it comes to supporting enterprise-level applications, this is where aelf comes in. For someone who is new to aelf, the best way to aquaint yourself with aelf’s technology is to read the aelf technical whitepaper.
If you have read the whitepaper of some blockchain projects, you might find them difficult to understand or even make no sense. As a result, readers (not speculators) are often at a loss as to what these projects are trying to do. Unfortunately, many projects often assume their readers are all experts and can understand the whitepapers with no difficulty. In reality, most blockchain projects are much more complex than Bitcoin. Therefore, if readers only know how Bitcoin works, they still cannot understand these projects’ whitepapers. If you want to draw potential developers to your platform, it is necessary to provide a beginner’s guide to understanding your whitepaper.
That’s why we have prepared this guide. But before reading this guide, you can quickly go through our website, read our slogan, watch the promo video on the homepage, download the whitepaper and before long, you may find something you cannot understand. Don’t worry, let’s start with aelf’s slogan:
Aelf, a Decentralized Cloud Computing Blockchain Network
Cloud computing is the most fundamental feature driving the entire aelf blockchain ecosystem. Running data intensive computation on multiple computers is obviously more cost-effective than on one mainframe computer. Suppose these computers are assembled in a huge building called data center, say thousands of computers, with professional maintenance by a company, say, Amazon, then these data centers are called a cloud, such as Amazon Web Services (AWS).
Having said that, it is still hard for a beginner to understand why cloud computing gives aelf an indispensable edge. This is because most people, including some in the blockchain sector, don’t have a sound knowledge of some of blockchain’s key concepts. As a result, it is difficult for them to move on to the more complex technology, let alone analyze the pros and cons of a blockchain project and its potentials. As far as I know, I think it is necessary to set the record straight on two important blockchain concepts.
What is a blockchain?
This is nonsense! We all know blockchain is a tamper-proof distributed ledger or database technology, as any professional would explain to you. You most probably have memorized this definition by heart and would rattle it off whenever someone asks you what blockchain is. The truth is, this definition is very misleading. Blockchain is not a new invention, nor does it have any magical features (for example: the magical tamper-proof feature). In this sense, it is different from the magical stuff in an alchemist’s furnace. Instead of viewing blockchain as a ledger or database, it is better to see it as a distributed system. So what is a distributed system?
A distributed system is a large number of interconnected computers, which makes it a peer-to-peer system. It was invented around 1960, long before the advent of Internet. There are already a lot of well-known distributed-system-based softwares, such as Bit-torrent and Netflix. In these softwares, people can upload the files on their computers to the P2P network and anyone can download them. But a distributed system can do much more. In the distributed system discipline, people have to solve a big problem, that is, everyone (every node) in the P2P network need to make an unanimous decision no matter what information they receive, and this unanimous decision is what we call a consensus, and this problem is called the Byzantine General Problem.
Say there are three Byzantine generals wanting to attack the same fortress, and they are at three different locations, they could only rely on couriers to send messages. In this situation, any general can only make a decision based on the other two generals’ messages. If one general wants to attack, he let couriers send the “attack” message to the other two generals, so do the other two generals. If the generals are all loyal, each of them should receive “attack, attack” coming from other two generals, and all three generals would attack the fortress. But if one of them is a traitor, he could send one general “attack” and send the other “retreat”, this other general will receive “attack, retreat”, if he follows majority rule, he will not make a decision because the votes on attack and retreat are the same. At the same time, the other general will attack, and the result is that these three generals will not reach a consensus on attack.
The generals are just like the nodes of a distributed system (i.e. blockchain). There are at least two points worth noting: first, all massages (transactions), have to be sent to the other generals (nodes) to keep them informed; second, all the nodes have to reach a consensus.
The first point means that it takes time for sending a message to all the nodes in a huge network, the second means that after a new block has been broadcast to the entire network, there should be a mechanism for all the nodes to agree on this block (a package of messages or logs), and it also takes time.
No comments:
Post a Comment